If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2+57y+35=0
a = 10; b = 57; c = +35;
Δ = b2-4ac
Δ = 572-4·10·35
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(57)-43}{2*10}=\frac{-100}{20} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(57)+43}{2*10}=\frac{-14}{20} =-7/10 $
| -1-2(9-8x)=12 | | 6+x/5=26 | | -49x^2+287x+42=0 | | 9v=7v+16 | | 3x-22=2x-6 | | 49x^2+287x+42=0 | | x/2+1=-19 | | 2n+16=3n+34 | | 63z^2+61z=-6 | | 32+u=5u | | 3x^2–7=47 | | -12=3x+12 | | -9=-11+b/9 | | 5u-10=0 | | 13x+3=-6 | | 3(4x-2)–14=2(6–2x) | | 8x+5=x+6 | | 5x-3+2x=7+7+6x | | (5v+3)(7v-8)=0 | | 0.12x+0.5(x-5)=0.01(4x-3) | | 26x-5x-3+4=40 | | -4(x+3)+57=35 | | -4(x+3)+5-7=35 | | -x=2=x-5-3x | | 15x+12=3x+36 | | 3(3x+2)-x=2(2+3) | | 4n+18=5n+27 | | 4•x-6=3•x+5 | | 4(7+2x)=57-(x-6) | | 4x-8+x+2=180 | | 2k-2=-13-3k | | m/9-1/2=5/18 |